贝叶斯算法
Allan Borodin等提出了完全的贝叶斯统计方法来确定Hub和Authoritive网页[11]。假定有M个Hub网页和N个Authority网页,可以是相同的集合。每个Hub网页有一个未知的实数参数,表示拥有超链的一般趋势,一个未知的非负参数,表示拥有指向Authority网页的链接的趋势。每个Authoritive网页j,有一个未知的非负参数,表示j的Authority的级别。
统计模型如下,Hub网页i到Authority网页j的链接的先验概率如下给定:
P(i,j)=Exp(+)/(1+Exp(+))
Hub网页i到Authority网页j没有链接时,P(i,j)=1/(1+Exp(+))
从以上公式可以看出,如果很大(表示Hub网页i有很高的趋势指向任何一个网页),或者和都很大(表示i是个高质量Hub,j是个高质量的Authority网页),那么i->j的链接的概率就比较大。